Skip to main content

Search Results

Family Support Groups

The Leukemia & Lymphoma Society (LLS) Family Support Groups program gives patients and their families a place to go where they can share information, education and feelings in a comfortable and caring environment. Family Support Groups are for anyone affected by blood cancer and are free. There are currently 230 groups near some of our chapters and in outlying areas, with the number of groups growing each year. Groups generally meet once a month at a library, a local conference room or at LLS's chapters.

Towards clinical testing of epitope editing to enable novel adoptive immunotherapies

Innovations in gene engineering have made it possible to reprogram immune cells to attack specific targets on cancer cells, allowing the first adoptive cellular immunotherapies, known as CAR T cells, to be approved by the FDA for the treatment B lymphoblastic leukemia. A similar approach is currently under development for AML, but in contrast to B-ALL, there is no leukemia-specific target which would be amenable to targeting by immune cells without incurring severe adverse effects.

CLL-1 CAR-T cells and trametinib for the treatment of Ras-mutated CMML and JMML

We hypothesize that demonstrating activity of CLL-1 CAR-T (CLL1CART) cell therapy with or without trametinib in pre-clinical models of chronic myelomonocytic leukemia (CMML) and juvenile myelomonocytic leukemia (JMML) is the most efficient method to bring cellular therapy to patients with these orphan diseases. In Aim 1, we will determine the in vitro and vivo efficacy of CAR-T cells redirected against CLL-1 using patient-derived xenograft (PDX) models of CMML and JMML. In Aim 2, we will evaluate the role of combining trametinib with CLL1CART cells.

Therapeutic targeting of AML stem cells 2018

Our SCOR team seeks to fundamentally reinvent the ways in which physicians diagnose and treat acute myeloid leukemia (AML). For over 40 years, AML has been treated with a combination of chemotherapy drugs that have major side effects and usually only provide short-term benefit to patients. Indeed, survival rates for most AML patients are dismal, and quality of life for these patients is poor. Consequently, improved strategies for AML are a huge priority for the field.

Memory-like NK cells after hematopoietic cell transplant to eradicate measurable residual disease

Relapse in patients with acute myeloid leukemia (AML) after hematopoietic cell transplant (HCT) is associated with extremely poor prognosis and thus remains a major unmet need. Natural killer (NK) cells are attractive for treating relapse in the post-HCT setting as these cells are not associated with causing graft-versus-host-disease. Cytokine-induced memory-like (CIML or memory-like) NK cells described by our group, demonstrate enhanced anti-leukemia activity, and persist for up to several months in an immune compatible post HCT setting (when derived from the stem cell donor).

Targeting Siglec15 to promote immune response to malignant B cells

The goal of this project is to explore a novel immunologic therapeutic target for hematologic malignancies, SIGLEC15 (Sig15). The central hypothesis is that Sig15 is aberrantly expressed in malignant B cells, is released to attenuate immune responses and can be targeted therapeutically to promote immune responses to malignant hematopoietic cells. This work will accelerate therapeutic exploitation of the immune system for the treatment of leukemia and lymphoma by targeting Sig15.

HLA Mutations, GvH Resistance and Relapse Following Allogeneic Hematopoietic Stem Cell Transplant

This project investigates immunogenetic determinants of relapse following allogeneic stem cell transplant for myeloid neoplasia. Herein we will determine molecular modes of inactivation of HLA immunodominant peptide-presentation including HLA mutations, deletion and down modulation as a means of immunoescape. We will also study immunogenetic predictors of the strength of graft vs. leukemia according to the HLA divergence in the context of relapse, TCR repertoire diversity and HLA mutations.

GNAS as a new therapeutic target for MDS

Myelodysplastic syndrome (MDS) is a blood disease with poor prognosis and frequent progression to acute myeloid leukemia (AML). There are currently no effective treatments. This proposal is based on a recent discovery by my group and proposes to investigate a protein called G⍺s (alpha subunit of the stimulatory G protein), as a novel therapeutic target for MDS. If successful, this work can lead to novel therapies that can transform the treatment of MDS, AML and possibly other cancers.

Targeting metabolic reprogramming in MDS and AML stem/progenitor cells

Myelodysplastic neoplasms are malignant disorders driven by expansion of diseased hematopoietic stem cells and progression to leukemia. Our investigations have identified the important role of the transporter of amino acid glutamine SLC38A1 in sustaining metabolic demands of rapidly growing malignant stem cells. The goal of this project is to genetically target this transporter to understand its role on tumorigenesis and progression; and to develop SLC38A1 inhibitors as novel therapeutic tools.

Therapy Acceleration Program - Portfolio

Since 2017, three TAP-supported therapies have been approved by the U.S.

TCR directed immunotoxins and antibody drug conjugates for the treatment of T cell malignancies

Few treatment options are available for T cell leukemias and lymphomas, collectively called T cell cancers that affect ~100,000 patients worldwide each year. The current proposal will generate new antibodies attached to drugs and toxins that kill the T cell cancers. Importantly, the antibodies will preserve enough healthy T cells to maintain a functioning immune system. These modified antibodies may improve patient outcome and limit side effects associated with traditional chemotherapies.

Targeting the pathogenic 'fire triangle' of inflammation, metabolism and mutations in myeloid leukemogenesis

My lab is focused on understanding the pathogenic interplay between oncogenic mutations, chronic inflammation and aberrant metabolism as a driver of the evolutionary processes that culminate in lethal myeloid malignancies. We leverage mouse models and human patient samples to establish modalities for targeting this interplay throughout disease pathogenesis. My long-term goal is to improve patient outcomes by establishing therapies that prevent and/or delay evolution to acute leukemia.

Bone Marrow Stromal Cell Senescence Induced by Dnmt3a-Mutant Hematopoiesis Drives Clonal Hematopoiesis and Transformation to Myeloid Malignancy

This project focuses on how age-associated clonal hematopoiesis (CH) alters the bone marrow (BM) microenvironment, and whether this promotes transformation of CH to acute myeloid leukemia (AML). I will utilize single cell RNA-seq data, genetic knockout models, and targeted inhibitors to perturb the non-hematopoietic and hematopoietic compartments of a mouse model of CH. The goal is to determine if manipulation of the BM microenvironment can attenuate CH and prevent AML transformation.

Uncovering mechanisms of DNMT3A stability in hematologic malignancies

DNMT3A is a critical tumor suppressor in hematologic malignancies; DNMT3A protein levels affect both tumor latency and type. DNMT3A is regulated in part by protein stability, but the mechanisms remain incompletely understood. Here, I will dissect the mechanisms that regulate DNMT3A protein turnover using CRISPR screening and genetically engineered mouse leukemia models. This work will reveal whether its stabilization could contribute to a new therapeutic approach for hematologic malignancies.

Uncovering MGA-driven epigenetic reprogramming in Richter's syndrome

Richter’s syndrome (RS) is a critical complication of chronic lymphocytic leukemia. RS patients are refractory to most existing therapies and show a median survival of ~12 months. I aim to dissect the function of a frequently mutated gene in RS (i.e., MGA) through cutting-edge single-cell analyses of patient samples and mouse models. The objective of these studies is to understand transformation biology, unravel novel therapeutic vulnerabilities, and provide the basis for personalized therapy.

Targeting Enhancer Dysfunction in Hematological Malignancy

Blood cancers such as leukemia, lymphoma and myeloma may be caused by abnormal regulation of genes that control normal cell growth and development. Genes that are normally active can be silenced and/or genes normally not present in a blood cell are abnormally activated. The result can be an uncontrolled signal for continued cell growth or survival. Our group studies the molecular basis of this gene deregulation using cells cultured in the laboratory, human specimens, and animal models.

Leveraging dysregulated signaling networks for therapeutic benefit in myeloproliferative neoplasms

The objective of this project is to decipher mechanisms driving transformation of myeloproliferative neoplasms (MPNs) to secondary acute leukemia (sAML). We have identified increased expression of DUSP6 and RSK1 in sAML patient cells. Genetic/pharmacologic targeting suggest a role for DUSP6 and RSK1 in MPN development. We thus propose studies to determine how DUSP6 and RSK1 contribute to MPN pathogenesis, and to evaluate the therapeutic potential of DUSP6 and/or RSK1 inhibition for MPN patients.

Investigating the role of preleukemia duration and clonal burden in progression to AML

The development of acute myeloid leukemia (AML) is preceded by a “preleukemic” phase in which mutated hematopoietic stem cells expand due to a fitness advantage. Our work uses prospective models and analysis of patient samples to study how the duration of preleukemia and how the preleukemic clonal burden affect progression to AML. Results of our studies will shed new light on AML pathogenesis and help guide clinical management of preleukemic conditions such as clonal hematopoiesis.

Targeting SF3B1 splicing factor mutant myeloid malignancies through dependency on GPATCH8

Mutations in RNA splicing factors, particularly those involving the core splicing factor SF3B1 are amongst the most common mutations found in myeloid neoplasms. We recently identified a cofactor protein known as GPATCH8 which is required for the aberrant function of mutant SF3B1. We now seek to understand and target the ways in which GPATCH8 and SF3B1 interact. In so doing we hope to develop new treatments for leukemias containing mutant splicing factors.

Targeting splicing factor mutant myelodysplastic syndromes through GSK-3

Myelodysplasia (MDS) is a lethal stem cell disorder characterized by defective blood formation and progression to leukemia. MDS is frequently caused by mutations in splicing factors, but these mutations also create an Achille’s heel that can be targeted to kill MDS cells while sparing normal blood cells. We identified a group of clinically safe drugs that target this weakness and selectively kill MDS cells in vitro. We will test whether these drugs are effective in mouse models of MDS.

Metabolic Regulation of Leukemic Cell Fate

Cell-intrinsic metabolic processes are dysregulated in acute myeloid leukemia (AML) and can act to sustain an oncogenic state of differentiation arrest. Using AML cell lines and patient-derived material grown in sophisticated liquid culture medium that mimics human plasma, we will perform metabolically focused in vitro and in vivo CRISPR-Cas9 screens to reveal metabolic regulators of AML cell fate that can be exploited via dietary or pharmacologic intervention as a novel therapeutic strategy.

Deciphering the role of p53 signaling in NPM1-mutant AML

NPM1c and TP53 mutations are exclusive in acute myeloid leukemia (AML) despite both being commonly present in patients, suggesting a fitness disadvantage for cells with co-occurring mutations. However, the mechanisms underlying this exclusivity have not been explored. This project will utilize novel models to dissect the importance of TP53 signaling in NPM1c+ (pre)-leukemic stem cells. Generated results may highlight therapeutic opportunities for improved risk management of NPM1c+ AML patients.

Mechanisms of Clonal Evolution in the Transformation of MPN to sAML

This research will investigate blood stem cell mutations associated with progression of myeloproliferative neoplasm (MPN) to secondary acute myeloid leukemia (sAML). Our preliminary data suggest that pre-leukemic cells with particular mutations may have a selective advantage in a background of certain MPN subtypes. We will confirm this by utilizing mouse models and both MPN and sAML primary patient samples. Ultimately, we will examine and test inhibition of mechanisms which drive MPN to sAML.

Novel immunotherapeutic strategies in infants with high risk AML

Treatment of AML in infants is especially challenging given unique genetic make-up of the disease as well as specific susceptibilities of the host. We will leverage the RNA Seq data from over 2000 patients to discover and validate novel targets (cell surface proteins), and in collaboration with Dr. Correnti (Protein Scientist) and Dr. Fry (CART development expert) generate and test novel antibodies, ADCs, BiTEs and CARTs directed against leukemia-specific targets in infants.

Role of the AML "Immunome" in response and failure of chimeric antigen receptor T cell therapy

Most patients with acute myeloid leukemia (AML) are not cured with chemotherapy alone, and most long-term survivors of AML have undergone an allogeneic stem cell transplant (also known as bone marrow transplant). The outlook is quite grim for patients whose AML relapses after transplant. We have developed a new type of treatment for AML called chimeric antigen receptor (CAR) T cells for these patients. The goal of this project is to investigate how to improve CAR T cells for AML.