Skip to main content

Search Results

Related Diseases and Conditions

In addition to our programs and services for blood cancer patients, families and caregivers, The Leukemia & Lymphoma Society (LLS) is pleased to offer an extensive directory of national and international resources. It may be helpful for you to browse each section to discover all that's offered.

Resources - Canada and International

In addition to our programs and services for blood cancer patients, families and caregivers, The Leukemia & Lymphoma Society (LLS) is pleased to offer an extensive directory of national and international resources. It may be helpful for you to browse each section to discover all that's offered.

Digital Resources

In addition to our programs and services for blood cancer patients, families and caregivers, The Leukemia & Lymphoma Society (LLS) is pleased to offer an extensive directory of national and international resources. It may be helpful for you to browse each section to discover all that's offered.

Overcoming ibrutinib resistance in mantle cell lymphoma

Mantle cell lymphoma (MCL) is an aggressive blood cancer which affects about 3,000 individuals in the United States annually. Despite advances of novel therapies in blood cancers, MCL remains incurable, and patients ultimately succumb to disease. We seek to evaluate longitudinal samples from patients with MCL treated with novel therapies to understand the mechanisms of drug resistance. We identify novel targets, with a particular focus on protein turnover pathways, to overcome drug resistance and improve survival of patients with MCL.
Support Info Banner

LLS Podcast

Being diagnosed with a blood cancer can make you feel like you are alone. The Bloodline with LLS is here to remind you that after a diagnosis comes hope. Listen in as experts and patients guide listeners in understanding diagnosis, treatment, and resources available to blood cancer patients. Join The Patient Education Team at The Leukemia & Lymphoma Society as they explore various survivorship topics.

Financial Resources

In addition to our programs and services for blood cancer patients, families and caregivers, The Leukemia & Lymphoma Society (LLS) is pleased to offer an extensive directory of national and international resources. It may be helpful for you to browse each section to discover all that's offered.

For information about LLS's financial assistance programs, click here.

Randomized Trial of a Sexual Dysfunction Intervention for Hematopoietic Stem Cell Transplant Survivors

Our goal is to improve sexual function and quality of life for patients with blood cancers undergoing hematopoietic stem cell transplantation. We will conduct a clinical trial to evaluate whether a multi-component intervention to address sexual health and intimacy concerns can improve sexual function and satisfaction as well as quality of life and mood in hematopoietic stem cell transplant survivors. We will also explore whether improvement in sexual function leads to improvement in quality of life in this population.
Paper Dolls

Other Helpful Organizations

In addition to our programs and services for blood cancer patients, families and caregivers, LLS is pleased to offer an extensive directory of national and international resources. These organizations can help with cancer-related issues like financial assistance, support and counseling, assistance with transportation, etc. It may be helpful for you to browse through each section to discover all that is offered.

Targeting Enhancer Dysfunction in Hematological Malignancy

Blood cancers such as leukemia, lymphoma and myeloma may be caused by abnormal regulation of genes that control normal cell growth and development. Genes that are normally active can be silenced and/or genes normally not present in a blood cell are abnormally activated. The result can be an uncontrolled signal for continued cell growth or survival. Our group studies the molecular basis of this gene deregulation using cells cultured in the laboratory, human specimens, and animal models.

Targeting kinase-dependent dysregulation of transcription factor control in acute myeloid leukemia

Defining mechanisms of dysregulated gene control are central to understanding cancer and the development of effective therapies. Our research is focused on the mechanisms of gene control dysregulation in acute myeloid leukemia (AML), a refractory form of blood cancer that affects both children and adults. Using new methods for manipulating proteins, we are defining essential mechanisms by which AML cells enable cancer-causing gene expression. This work also allowed us to develop new drugs to specifically block this in cancer, but not healthy cells.

Targeting Microenvironment Determinants in Peripheral T-cell Lymphoma

Peripheral T-cell lymphomas are highly aggressive blood cancer that have very poor survival rate, highlighting the need for new therapies to improve patient survival. We aim to improve our understanding of the characteristics of the individual cancer cells and their interaction with surrounding cells in the tumor environment with the goal of identifying new drugs that we can validate in preclinical models and move into more efficient treatments for lymphoma patients.

Interrogating T-cell apoptotic priming to improve CAR-T persistence in treatment of lymphoid malignancies

CAR-T cells are made from a patient’s own immune cells, altered so that they specifically recognize and kill the patient’s cancer cells. They are effective in many but not all cases of B-acute lymphoblastic leukemia (B-ALL) and diffuse large B-cell lymphoma (DLBCL), among other blood cancers. In this proposal we seek to better understand ways to select T cells that will make better CAR-T cells as well as to treat CAR T cells them in ways to make them work better in the cancer patient.
Support Info Banner

Support Groups

Reach Out to Others for Support

The Leukemia & Lymphoma Society's (LLS's) support groups are the perfect place to talk with other people affected by blood cancers, including patients, family members and caregivers. The groups provide mutual support and offer the opportunity to discuss anxieties and concerns with others who share the same experiences. This sharing strengthens the family bond and enhances everyone's ability to cope with cancer.

Targeting the MMP-13/PD-1H signaling axis for multiple myeloma bone disease and immunosuppression

Multiple myeloma is an incurable blood cancer complicated by bone diseases and compromised immune system. Our work indicated that checkpoint inhibitor PD-1H(VISTA) functions as the MMP-13 receptor, and the MMP-13/PD-1H signaling axis plays a critical role in multiple myeloma induced bone disease and immunosuppression. Therefore, immunotherapy targeting the novel MMP-13/PD-1H interaction module represents a novel approach to cure this devastating cancer.

Family Support Groups

The Leukemia & Lymphoma Society (LLS) Family Support Groups program gives patients and their families a place to go where they can share information, education and feelings in a comfortable and caring environment. Family Support Groups are for anyone affected by blood cancer and are free. There are currently 230 groups near some of our chapters and in outlying areas, with the number of groups growing each year. Groups generally meet once a month at a library, a local conference room or at LLS's chapters.

Interrogation of glutathione biology in relapsed acute myeloid leukemia stem cells

Acute myeloid leukemia (AML) is a devastating blood cancer. Most AML patients will initially respond to standard therapy; however, for many patients the disease recurs resulting in patient death. Consequently, there is an urgent need to develop new therapeutic strategies for relapsed AML patients. The objective of our proposal is to understand and target properties specific to relapsed AML cells with the overall goal of improving relapsed AML patient outcomes.

GNAS as a new therapeutic target for MDS

Myelodysplastic syndrome (MDS) is a blood disease with poor prognosis and frequent progression to acute myeloid leukemia (AML). There are currently no effective treatments. This proposal is based on a recent discovery by my group and proposes to investigate a protein called G⍺s (alpha subunit of the stimulatory G protein), as a novel therapeutic target for MDS. If successful, this work can lead to novel therapies that can transform the treatment of MDS, AML and possibly other cancers.

Molecular basis and new therapeutic strategies in lineage ambiguous leukemia

Lineage-ambiguous leukemias are high-risk blood cancers with unclear biologic basis and suboptimal treatment options. Here, I will identify the cell of origin of lineage ambiguous leukemia and investigate new therapeutic strategies through in vitro and in vivo experimental modeling approaches and preclinical drug studies in patient-derived xenografts. These studies will clarify the cellular and molecular alterations driving lineage ambiguity and advance a new, rational therapeutic approach.

Identification and characterization of genetic factors affecting MLL/KMT2A fusion proteins stability in MLL/KMT2A rearranged leukemias

MLL1/KMT2A rearranged leukemias are the most common blood cancer occurring in children characterized by dismal prognosis. Given the importance of fusion proteins in driving the disease, I will determine factors affecting the fusion protein stability through a CRISPR/Cas9 screening approach in an innovative model system where the MLL fusions are endogenously tagged with a fluorescent protein. This will facilitate development of molecular glue degraders specifically targeting the MLL fusions.

Investigating the Role of ASXL1 Mutations in CALR-mutated Myeloproliferative Neoplasms

My research focuses on myeloproliferative neoplasms (MPN) and the mutations that drive the progression of these blood cancers. Currently, I am investigating mutations in the gene ASXL1, which are associated with a poor prognosis. I am using mouse models and patient-derived cells to determine how ASXL1 mutations mediate epigenetic changes in MPN. My goal is to identify ways of targeting the pathological mechanisms caused by ASXL1 mutation, resulting in new treatment strategies for patients.

Optimizing MICA/B antibody for AML by selective binding to Fc activating receptors

Acute myeloid leukemia (AML) is a blood cancer characterized by poor clinical outcomes. We developed an antibody that inhibits AML in models by triggering anti-leukemia immunity. Now we developed a new version of this antibody with higher affinity to the leukocyte receptors that mediate anti-leukemia immunity. We will establish the ability of this optimized antibody to elicit greater inhibition of AML. The studies will generate important information about how to induce anti-leukemia immunity.

Targeting HSP70 to Immune Effector Cells to Overcome the Immune Suppressive Myeloma Microenvironment

Development of a strong anti-cancer immune response requires coordinated action of the innate and adaptive parts of the immune system, but cancer cells alter their environment to suppress virtually every step in this process, which promotes cancer progression and treatment resistance. One promising strategy could be to target Heat shock protein 70 (HSP70), which plays an important role in both innate and adaptive immunity, and we therefore developed a series of novel antibodies to HSP70, one of which cured mice of multiple myeloma.

Impact of sublethal radiation dose on tumor response, microenvironment and the immune system

Extremely low dose radiation can improve blood cancer outcomes. But the mechanisms of how sublethal radiation (SRT) affects tumors, the microenvironment and immune system remain unclear. We envision a broad, nuanced role for SRT with benefits across diverse clinical situations and propose 3 clinical trials with deep translational components. Each can be paradigm-changing, but are thematically unified to improve mechanistic understanding of how such exceptionally small doses might offer so much.

Blastic plasmacytoid dendritic cell neoplasm (BPDCN): understanding disease biology to improve therapy

We focus on blastic plasmacytoid dendritic cell neoplasm (BPDCN), an aggressive blood cancer with limited treatment options and poor outcomes. We want to understand what causes the disease, develop laboratory tools, and identify new treatments and ways to overcome therapy resistance. We have translated our discoveries to clinical trials. Our goal is to continue this bench to beside approach to develop the next generation of BPDCN therapies that improve survival and minimize treatment toxicity.