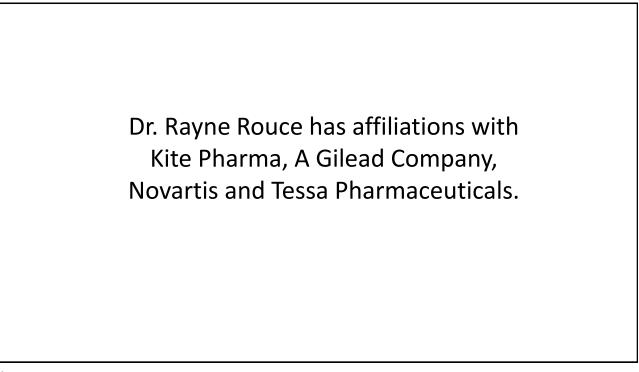
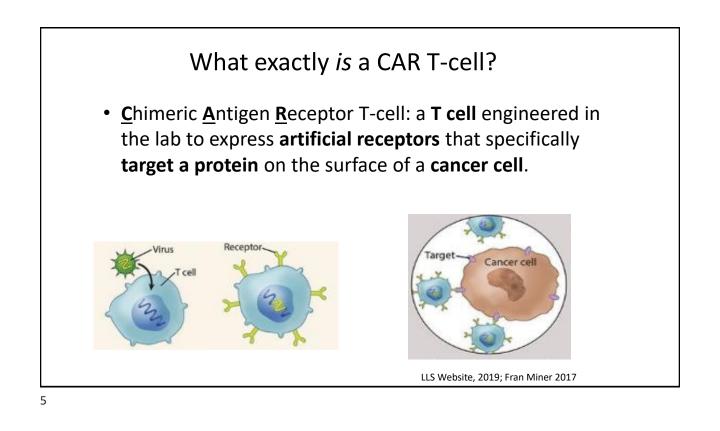
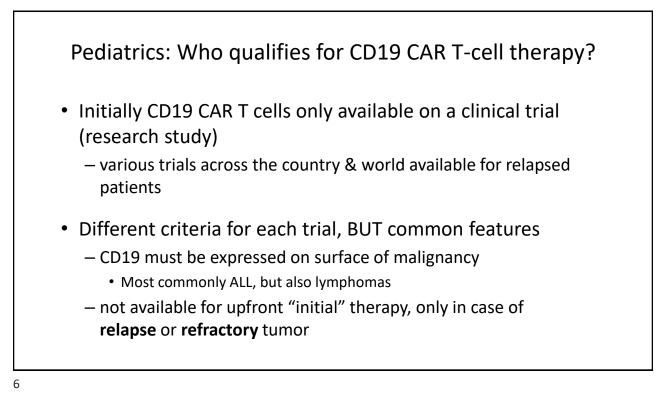


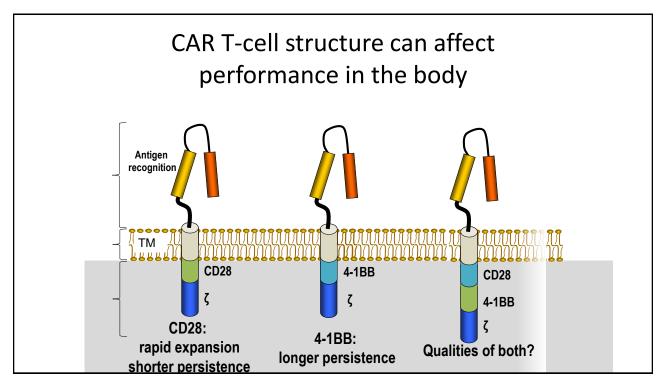
BEATING BEATING CANCER IS IN OUR BLOOD.

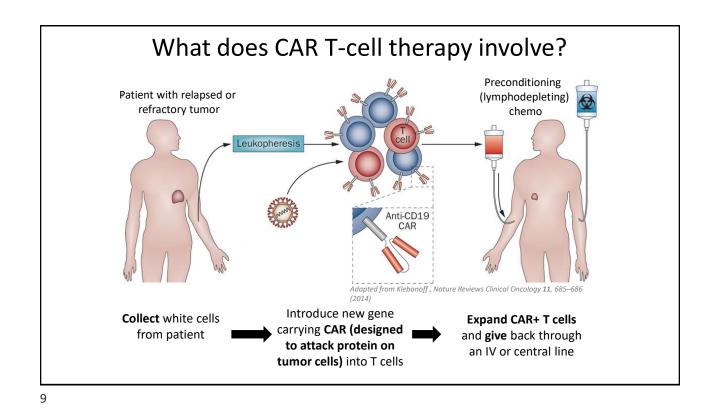
CAR T-CELL THERAPY IN CHILDREN AND ADULTS WITH BLOOD CANCERS

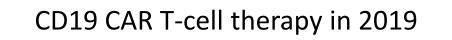

Speakers Loretta Nastoupil, MD Assistant Professor Department of Lymphoma/Myeloma Division of Cancer Medicine The University of Texas MD Anderson Cancer Center Houston, TX


Rayne H. Rouce, MD Assistant Professor Department of Pediatrics Texas Children's Cancer Center for Cell and Gene Therapy Baylor College of Medicine


Houston, TX

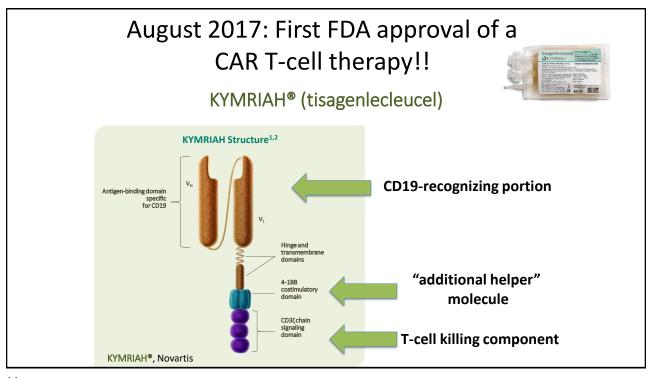


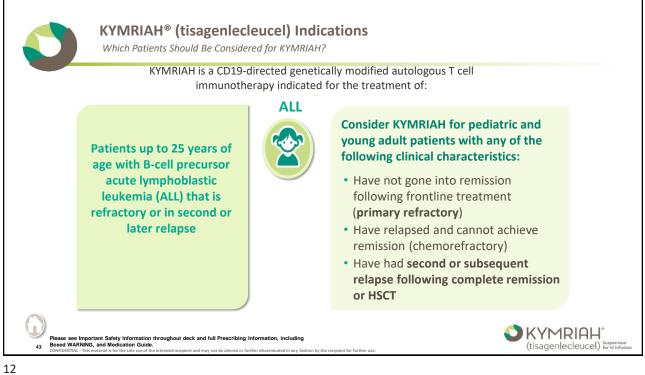


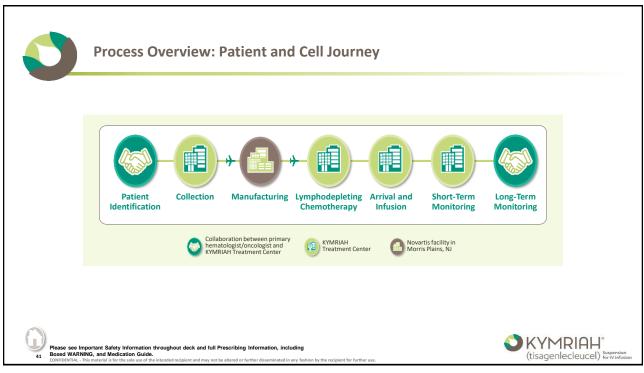


Major discoveries from preclinical and early clinical trials

- CAR T cells require additional "help" to expand and endure in the body
- Some of this help comes from "within" the CAR T-cell
 - additional stimulatory molecules that can be added to the cell
- Some of the help comes from "outside"
 - lymphodepleting chemo

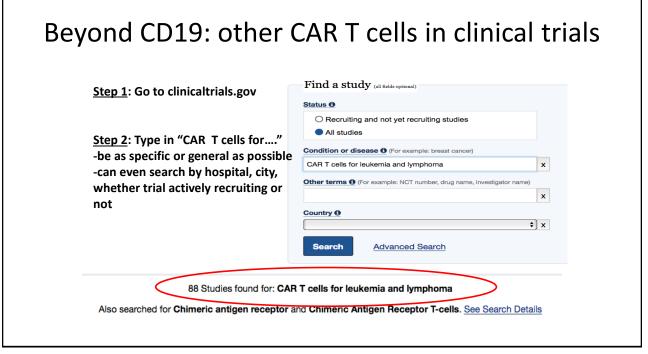






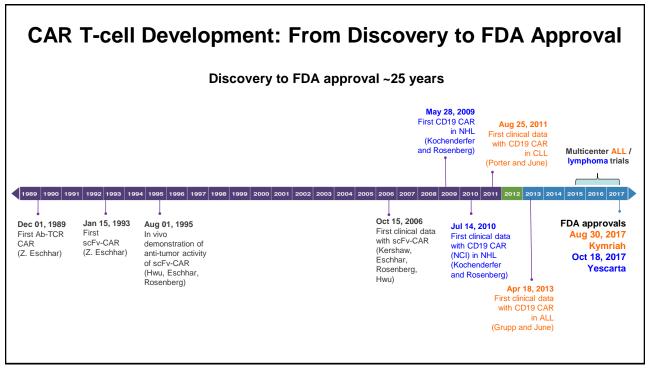
- High complete remission rates in multiply relapsed patients across most studies
 - overall response between 65 and 90%
 - some patients remain in remission for years
- Larger trials, longer follow-up and high remission rates led to partnerships with industry
- Efforts to make widely available & "prescribable"
- August 2017: First FDA approval of a CAR T cell therapy!!

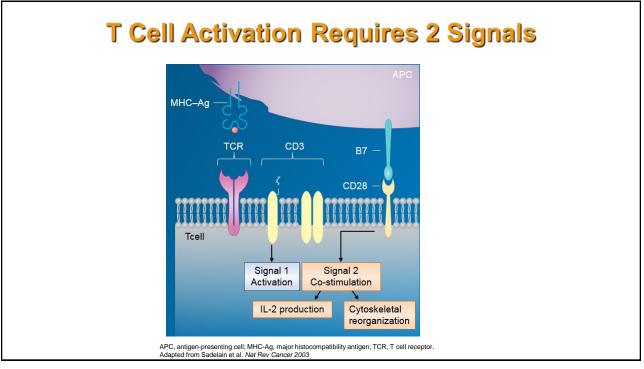
KYMRIAH® (tisagenlecleucel)

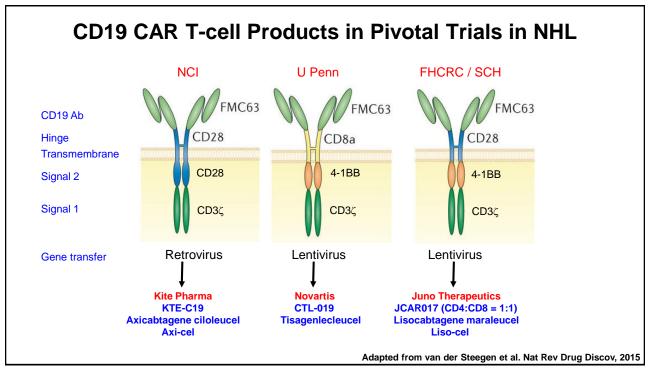


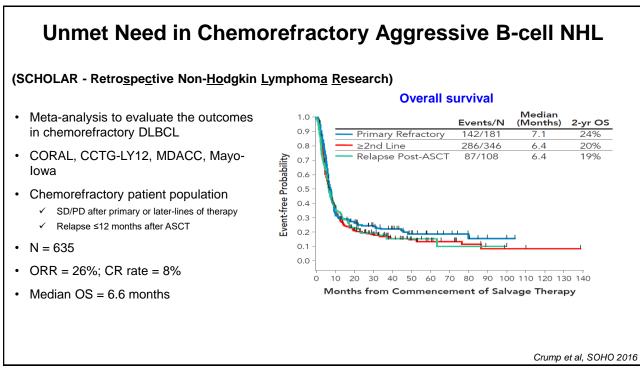
The Future of CAR T-cell therapy for children with cancer

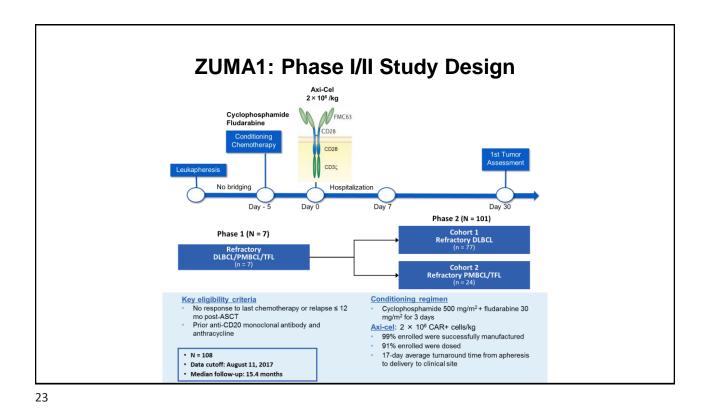
- CD19 CAR Therapy
 - Moving therapy earlier
 - treating patients in first relapse
 - treating patients with persistent measurable disease (even small amounts aka "minimal residual disease") early on in treatment
 - Targeting multiple antigens in addition to CD19
 - Combination therapy to enhance benefit
 - "off-the-shelf" options
 - Extending approval to CD19+ lymphoma in pediatric patients

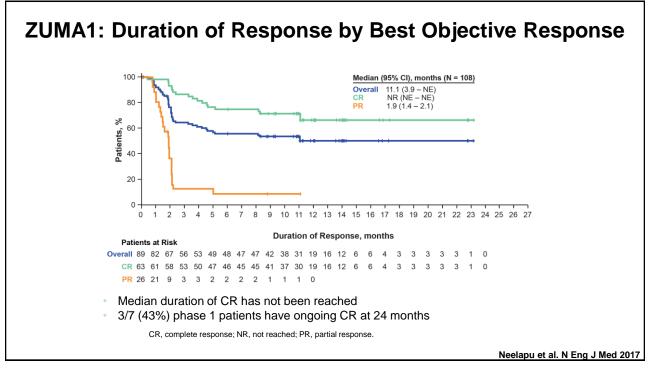

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

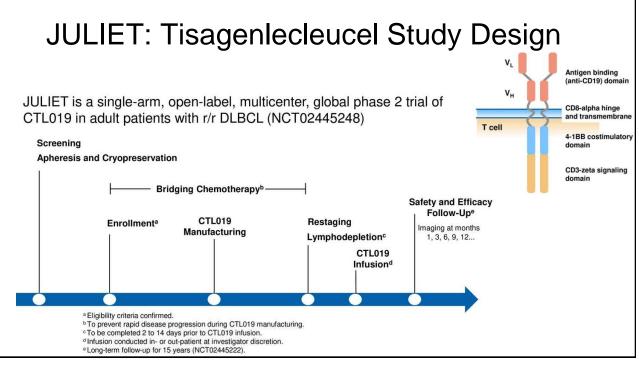

Making Cancer History®

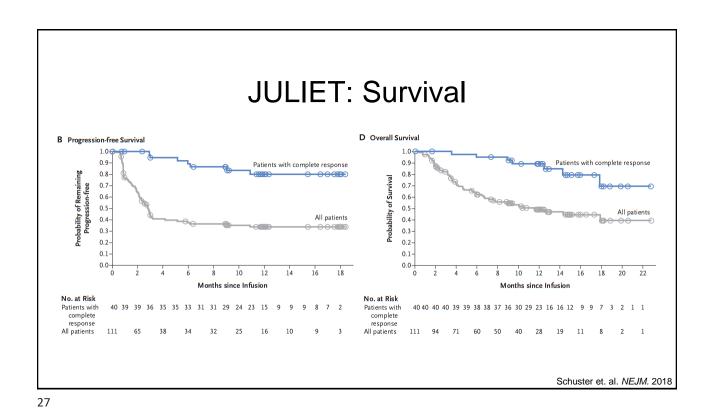

CAR T-Cell Therapy for NHL: Current and Future Directions


Loretta J. Nastoupil, M.D. Assistant Professor Department of Lymphoma and Myeloma The University of Texas MD Anderson Cancer Center Houston, TX


Disclosures • Research support: Celgene, Genentech, Janssen, Karus, Merck, TG Therapeutics • Honorarium: Celgene, Genentech, Gilead, Janssen, Novartis

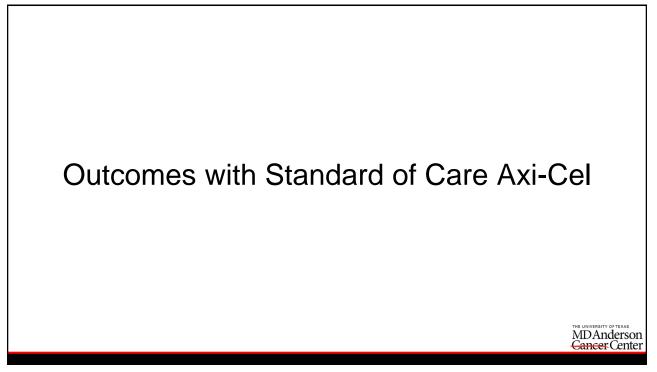




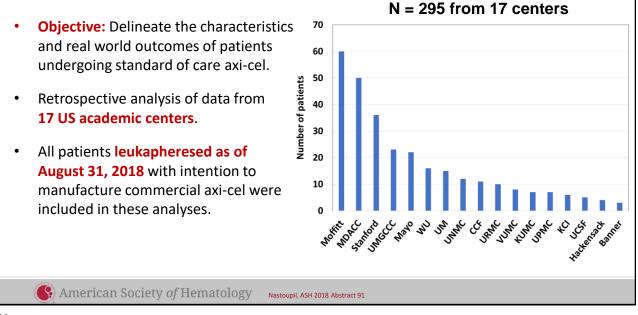


	Pivotal coh	ort (N=101)
	CRS	NE
All grades	93%	64%
Grade ≥3	13%	28%
Time to onset [Median (Range)]	2 (1-12) days	5 (1-17) days
Time to resolution (Median)	8 days	17 days
Tocilizumab usage	43	3%
Corticosteroids usage	27	" %
 3 deaths due to AEs – 1 cardiac Lee criteria used for CRS gradir CTCAE criteria used for neurolo 	ng	-

Multicenter CD19 CAR T-cell Trials in Aggressive NHL


Study / Sponsor	ZUMA1 / Kite	JULIET / Novartis	TRANSCEND / Juno
Reference	Neelapu et al, NEJM 2017	Schuster et al, NEJM 2018	Abramson et al, ASH 2017
CAR T design	CD19/CD3ζ/CD28	CD19/CD3ζ/4-1BB	CD19/CD3ζ/4-1BB
CAR T dose	2 x 10 ⁶ /kg	0.6-6 x 10 ⁸	0.5-1 x 10 ⁸
Conditioning therapy	Cy/Flu	Cy/Flu or Bendamustine	Cy/Flu
Lymphoma subtypes	DLBCL / PMBCL / TFL	DLBCL / TFL	DLBCL / TFL / FL Gr 3B
Treated/Enrolled	101/111 (91%)	111/165 (67%)	108/140 (77%)
Relapsed/Refractory	Refractory	Relapsed or refractory	Relapsed or refractory
Relapse post-ASCT	21%	49%	42%
Bridging therapy	None	Allowed	Allowed
Manufacturing success	99%	93%	98%
ORR / CR (%)	82 / 54	52 / 40	80 / 55

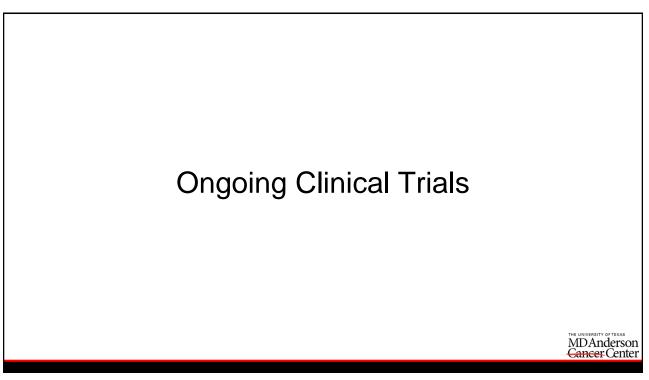
Cytokine Release Syndrome and Neurotoxicity: Multicenter CD19 CAR T trials in adult NHL

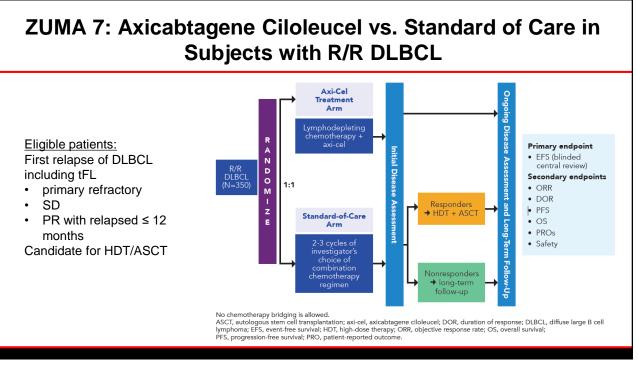

Study/Sponsor	Product	N	CRS All Grades	CRS Grade ≥3	NT All Grades	NT Grade ≥3	Ref
ZUMA1 / Kite	CD19/CD3ζ/CD 28	101	93%	13%	64%	28%	Neelapu et al, NEJM 2017
JULIET / Novartis	CD19/CD3ζ/4- 1BB	111	58%	22%	21%	12%	Schuster et al, NEJM 2018
TRANSCEND / Juno	CD19/CD3ζ/ <mark>4-</mark> 1BB	67	36%	1%	21%	15%	Abramson et al, ASH 2017

Lee criteria used for CRS grading on ZUMA1 and TRANSCEND

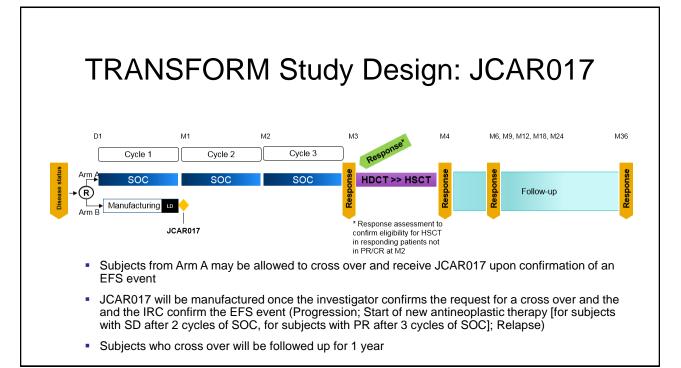
- U Penn criteria used for CRS grading on JULIET
- All trials used CTCAE criteria for neurotoxicity (NT) grading
- 3 deaths on ZUMA1 due to AEs 2 CRS and 1 pulmonary embolism

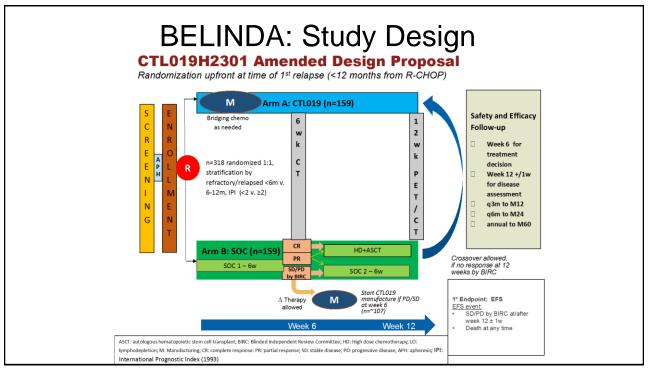
Study Design: Outcomes with SOC Axi-Cel

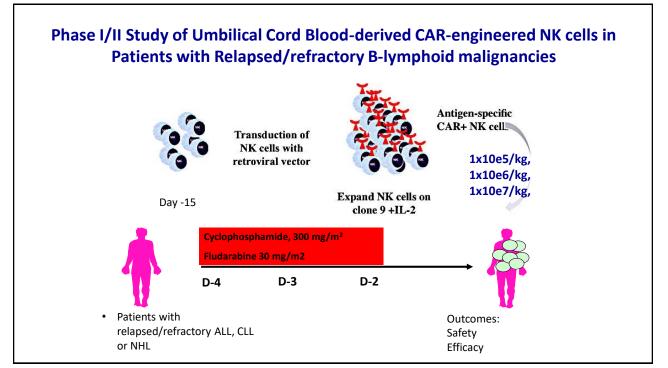

31

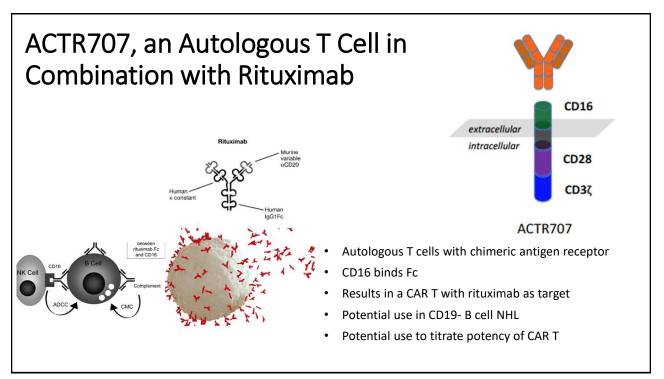

Characteristics Differentiating Patients in the Real World from ZUMA-1

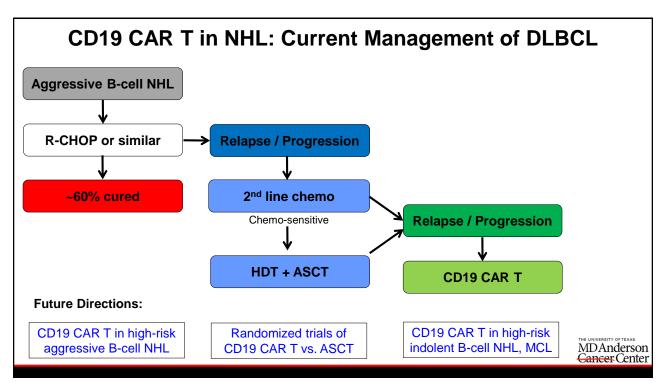
• 124 of 286* (43%) patients would not have met eligibility for ZUMA-1 at the time of leukapheresis.


	Criteria Excluded from ZUMA-1	N=124 N (%)	
	Platelets < 75	37 (13)	
	Active DVT/PE	27 (9)	
	Prior CD19 or CAR T cell therapy	24 (8)	
	GFR < 60	22 (8)	
	History of CNS lymphoma	22 (8)	
	Symptomatic pleural effusion	11 (4)	
	LVEF < 50%	10 (4)	
	Prior allogeneic SCT	7 (2)	
(America	n Society of Hematology Nastoupil, ASH 2018 Abstract 91	* Missing data on 7 su	bjects enrolled on ZUMA 9


	SOC Axi-cel N = 274 (mITT)	ZUMA-1 ¹ N = 108
All Grades of CRS [*] , N (%)	240 (92%)	100 (93%)
Grade ≥ 3 CRS, N (%)	18 (7%)	14 (13%)
Median time to onset of CRS	3 days	2 days
All Grades of NT**, N (%)	181 (69%)	70 (65%)
Grade ≥ 3 NT, N (%)	85 (33%)	33 (31%)
Median time to onset of NT	6 days	5 days
* Lee criteria used for grading CRS * CTCAE or CARTOX criteria used for grading neurotoxicity		
	¹ Neelapu, Locke et al. <i>NEJM</i> . 201	7 Dec 28;377(26):2531-2544







CAR T-cell in Multiple Myeloma						
	Bb21217	JCARH125	MCARH171	FCARH143	LCAR-B38M	Native TCR
Center/Spons or	Celgene/Bluebird bio	Juno/Celgene	MSKCC	Fred Hutch	Nanjing Legend Biotech	Baylor
Donor	Autologous	Autologous	Autologous	Autologous	Autologous	Autologous
scFv	anti-BCMA scFv, cultured in pan PI3K inhibitor bb007 (less differentiated)	Human anti-BCMA scFv	Human anti-BCMA scFv	Human anti- BCMA scFv	llama anti-BCMA non- scFy, 2 variable heavy chain domains = 2 diff epitopes	MAGEA4, PRAME, Survivin, NYESO-1, SSX2 TCRs (enriching native specificity)
Co stim	4-1BB	4-1BB	4-1BB	4-1BB	4-1BB	n/a
Transduction	Lentivirus	Lentivirus	Retrovirus	Lentivirus	Lentivirus	n/a
Lines of therapy	6 (4-17)	7 (3-23)	6	11	3 (1-9)	2-10
High risk pts	58%	77%	64%	73%	?	?
CRS/CRES	CRS 67% (1 gr 3) CRES 24% (1 gr 4)	9% CRS 3/4 (80% all gr) 7% neuro 3/4 (25% all)	6/11 CRS (Gr3/4 – 4) 1 gr 2 neuro	10/11 (<= gr 2) 1 gr 3 neuro	90% (grade 3=7%) Grade 1 neuro = 1	none
ORR >= PR	83% (150x10^6, 11 pts) 25% sCR/CR 4/4 MRD neg	82%, 48% >= VGPR CR/sCR 27%	64% ORR	100% ORR 4 CR, 5 VGPR, 2 PR	88% in 74 patients 74% CR mDOR 16 mo mDOR (MRD-) 22 mo	3 PR, 1 CR/12 pts with active disease

Q&A SESSION

Car T-Cell Therapy in Children and Adults with Blood Cancers

Ask a question by phone:

- Press star (*) then the number 1 on your keypad.

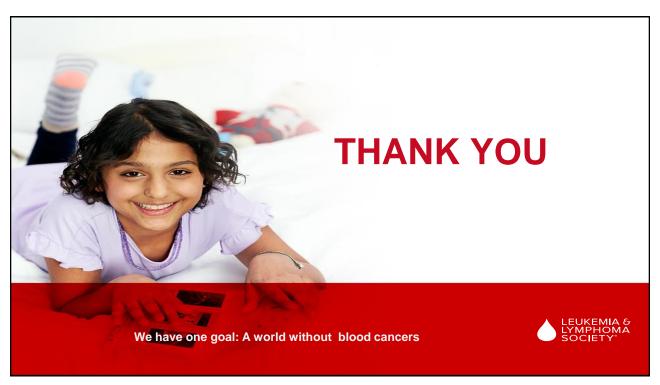
• Ask a question by web:

- Click "Ask a question"
- Type your question
- Click "Submit"

Due to time constraints, we can only take one question per person. Once you've asked your question, the operator will transfer you back into the audience line.

BEATING CANCER IS IN OUR BLOOD.

LEUKEMIA & LYMPHOMA SOCIETY"


LLS EDUCATION & SUPPORT RESOURCES Information Specialists Master's level oncology professionals, available to help cancer survivors nay autivorship. EMAIL: infocenter@LLS.org TOLL-FREE PHONE: 1-800-955-4572 CAR T-cell Immunotherapy: www.LLS.org/caregiver Free Education Booklets: www.LLS.org/booklets Free Telephone/Web Programs: www.LLS.org/programs Live, weekly Online Chats: www.LLS.org/chat LLS Community: www.LLS.org/community

43

LEUKEMIA & LYMPHOMA SOCIETY*

LLS EDUCATION & SUPPORT R	RESOURCES
	 LLS Podcast, <i>The Bloodline with LLS</i> Listen in as experts and patients guide listeners in understanding diagnosis, treatment, and resources available to blood cancer patients: <u>www.thebloodline.org</u> Education Videos
	Free education videos about survivorship, treatment, disease updates and other topics: www.LLS.org/educationvideos Patti Robinson Kaufmann First Connection Program Peer-to-peer program that matches newly diagnosed patients and their families: www.LLS.org/firstconnection
	Free Nutrition Consults Telephone and email consultations with a Registered Dietitian: <u>www.LLS.org/nutrition</u> LLS Copay Assistance Program: Provides financial assistance towards copayments and insurance premiums: <u>www.LLS.org/copay</u>
	 Financial Assistance Programs for approved CAR T-cell therapies: Kymriah®- 1-844-459-6742 Yescarta®- 1-844-454-5483
44	

